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PREFACE

This report represents the completion of one phase of the study
of coupled core reactor stability, a study sponsored by the National Aero-
"nautics and Space Administration under Grant NsG-490 on research in and
application of modern automatic control theory t§ nuclear rocket dynamics
and control. The report is intended to be a self-contained unit and, there-
fore, repeats some of the work presented in previous status reports.

This work was submitted to the Department of Nuclear Engineering
at The University of Arizona in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.
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ABSTRACT

" The type of coupled-cofe systém with which this study is pri-
marily concerned is that of two or more separate power reactors coupled
together for the purpose of achieving an increased system power output.
The primary example is that of the proposed clustering of nuclear rocket
engines.

The behavior of a specific core in a coupled system is influenced
by the past histories of all the other cores due to the transit time in-
volved in the mutual exchange of leakage neu;roqs. The equations which
describe the dynamics of a coupled-core system contain, because of this
time lag in the interdependent portion of1the system behavior, variables
whose arguments are delayed or retarded in time. Herein lies the unique
mathematical feature of the problem.

It is necessary from a practical standpoint to discover whether
or not a projected coupled-core system is inherently stable. If, for
example, a system of clustered nuclear rocket engines 18 operating at
design power conditions, hopefully the system, if perturbed from the
operating point, returns to its original state. This is the fundamental
problem of the asymptotic stability of an autonomous or undriven system.

Recently, researchers have found that the most universal method
of investigating the stability of ordinary differential equations is the
Second Method of Liapunov. It is natural, therefore, to derive a tech-

nique based upon Liapunov's theory for this problem. The approach to
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the stability problem via the Second Method has several advantage§ over
the more conventional methods of analysis. “The kinetics equations for
power reactors are nonlinear due to temperature-induced reactivity ef-
fects. A conventional analysis might include a linearization of the
describing equations and then perhaps a series approximation for the
time delay. If series approximations are used for the delay, it is gen-
erally not possible to determine whether the results are conservative or
falsely optimistic. Also, because the linearized equations are valid
only in an arbitrarily small region of the variables about the operating
point, it i8 not possible to determine the bounds on the initial con-
ditions of the system within which the system is asymptotically stable.

The Second Method, on the other hand, is directly applicable to
nonlinear equations. The presence of the time delay, however, necessi-
tates some modifications to the Liapunov approach. The extension of the
method is based upon the work performed by Driver, Krasovskii, and Raz-
umikhin on the mathematical features of equations with delay. The time
delay is incorporated directly into the Second Method, thus it is certain
that the results are conservative due to the sufficiency of the stability
conditions.

The modified approach is based upon comparing all possible solu-~
tions of a system with delay with the known properties of the system with-
out delay. The technique used is to find quadratic Liapunov functions for
the linearized, zero delay system. Stability conclusions can then be
made for the linearized system with delay. Finally, the nonlinear terms

are added to estimate the regions of stability of the state variables.



The results are adequate, from a practical viewpoint, for a
simplified two-core example. However, the approach becomes highly re-
strictive forlhigher order, more complicated cases, and the results be~
come marginal. The basic stability conclusions combined with simulation
studies for the more complicated system, reveal that there are no prac-
tical stability problems involved in coupled-core nuclear reactor dynam=

ics.
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Chapter 1

INTRODUCTION

A coupled-core nuclear reactor is a critical reactor which con-
sists of two or more independently subcritical cores. The multiplication
of neutrons in each separate core is not sufficient to result in a selé-
supporting chain reaction. However, due to the leakage of neutrons from
the physical boundaries of each core, there is a mutual exchange of
neutrons among the cores. This is the neutronic coupling effect which
balances the neutron economy of the entire reactor or system of cores
such that a sustained nuclear fission reaction may occur.

Basically, there are three classes of systems which may be treat-
ed as coupled-core systems. The first class includes all large reactors
whose properties of construction are uniform throughout the core, that
is, the fuel-moderator arrangement is uniform. The coupled-core analysis
in this case consists of subdividing the main core into several smaller
cores and writing separate equations to describe the dynamics of each
subdivision. The use of this technique leads to an approximate descrip-
tion of the spatial effects in the system behavior.

The second category of coupled-core reactor system comprises
reactors which contain sections of completely distinct fuel-moderator
material and geometric arrangement; In this case, it is necessary
to describe each section by a different set of coupled equations.

An example of this type of reactor is one which has two regions with

different neutron energy spectra, fast and thermal, for the purpose of



obtaining different heat transfer characteristics or to enhance fuel
breeding in one region.

The third type of coupled-core system is the one with which this
study is primarily concerned. This is the case of two or more separate
power reactors coupled together for the purpose of achieving an increas-
ed system power output using an existing reactor system. The primary ex-
ample is that of the proposed clustering of nuclear rocket engines (Seale,
1964a, 1964b). The individual cores in this arrangement are actually sep-
arate reactors designed and equipped to produce power by themselves.

Due to the coupling mechanism, the behavior of each core in the
reactor is influenced by the behavior of all the other cores. In addition,
a neutron in a given core, if it eventually is to cause fission in another
core, requires a period of time to escape from the first core, travel be-
tween cores, enter the second core, and cause fission. Hence, the behav-
ior of a specific core actually depends upon the past histories of all the
other cores. The equations which describe the dynamics of a coupled-core
system contain, due to this time lag in the interdependent portion of the
system behavior, variables whose argument is delayed or retarded in time.
Herein lies the unique mathematical feature of the problem.

A knowledge of the stability of a coupled-core reactor system
is naturally quite important, It is possible in fact to raise a serious
doubt as to whether or not a coupled system is stable using a simple
physical argument. Suppose two reactors are operating together at the
same power level. If the power of one reactor is increased, the power

level of the other reactor also increases, thus affecting the originally



perturbed reactor, and so on. At high power levels, of course, the
increase in the core temperature leads to increased neutron leakage
because of the decrease in core density. This intrinsic negative re-
activity effect in general stabilizes an ordinary reactor.

It is necessary, from a practical standpoint, to discover

whether or not a projected coupled-core system is inherently stable.
If, for example, a system of clustered nuclear rocket engines is operat-
ing at design power conditions, hopefully the system, if perturbed from
the operating point, returns to its original state. This is the funda-
mental problem of the asymptotic stability of an autenomous or undriven
system. The purpose of this investigation is to solve this problem for
coupled-core nuclear reactor systems.

Recently, researchers have found that the most universal method
of investigating the stability of ordinary differential equations is the
Second Method of Liapunov (LaSalle and Lefschetz, 1961). It is natural,
therefore, to derive a technique based upon Liapunov®’s theory for this
problem. The approach to the stability problem via the Second Method
of Liapunov has several advantages over the more conventional methods
of analysis., The kinetics equations for power reacters, such as a
rocket system, are nonlinear due to the temperature-induced reactivity
effects. The coupled-cere equations also contain the time delay terms
mentioned previously.

A conventional stability analysis might include a linearization
of the describing equations, and then perhaps a truncated series approxi-

mation or Pade approximant (Weaver, 1963) to estimate the effect of the



time delay. The exact solution for the roots of the characteristic
equation of the linearized system is difficult because of the exponen-
tial time delay terms.

If series approximations are used for the time delay terms, it
is generally not possible to determine whether the stability regults are
conservative or falsely optimistic. Also, because the linearized equa-
tions are valid only in an arbitrarily small region of the variables
about the operating point, it is not possible to determine the bounds
on the initial conditions of the system within which the system is
asymptotically stable.

The Second Method of Liapunov, on the other hand, is directly
applicable to nonlinear equations. The presence of the time delay,
however, necessitates some modifications to the basic Liapunov approach.
The Second Method yields only sufficient conditions for stability, so
if the time delay feature is incorporated directly into the Second
Method, it is certain that the results are either exact or conservative.

The reasons that the Second Method camnot be applied directly
to the time delay problem will become apparent later. When the diffi-
culties are overcome, the usefulness of the Second Method of Liapunov
for solving the stability problem for coupled-core nuclear reactor sys-

tems will be demonstrated.



Chapter 2

THE KINETICS EQUATIONS FOR COUPLED-CORE REACTOR SYSTEMS

The model to be used in obtaining fhe system kinetics equations
is that of a point reactor in which the various parameters and variables
represent averaée values with respect to space. If the dynamic pro-
cesses occurring within the system are understood, the lumped parameter
mnodel should yield a sufficiently accurate description of the behavior

of the system.

General Neutron Kinetics

There 1s, in a given core, an average density n(t) of neutrons,
all of which participate in the nuclear processes of the system at a
single energy. Due to leakage from the system, parasitic absorption in
the core materials, and productive absorption in the fuel, the rate of
disappearance of these neutrons is n(t)/fg , where g, 1s the mean life-
time of the neutrons. The productive absorption of neutrons in the fuel
causes nuclear fission, accompanied by the release of energy and addition-
al neutrons. Some of the produced neutrons do not appear at the instant
of fission, but some time later. It is assumed that these delayed neu-
trons, which appear through the radioactive decay of unstable fission
products, constitute a fraction B of the total fission neutrons. Although
there are several distinct groups of nuclei which decay to produce the
delayed neutrons, it is assumed that all the delayed neutrons can be
attributed to one effective group of precursor atoms whose mean lifetime

is 1/A and whose density is C(t).



The effective multiplication of neutrons, or total number of
neutrons produced in one generation per neutron in the previous genera-
tion is k . The delayed neutrons appear at the same rate at which the
delayed neutron precursors decay, so the total rate of production of

neutrons in the system is

G e +aew

where the first term is the prompt neutron source and the second term
is the delayed neutron source,
The time rate of change of the neutron density 1s the difference

between the rate of production and the rate of loss, or

a(t) =2 n(e) - En(e) +rc(e) +5(0) (2.1a)

C(t) = % n(t) - AC(t) (2.1b)

where Eq. (2.1b) describes the rate of change of the precursor atom
density. The S(t) in Eq. (2.la) 1s a general source term which accounts
for additional internal or external neutron addition processes for a
specific system. The parameter g is ég , the effective neutron lifetime.
If the multiplication of the system is increased, a neutron is likely

to survive over a greater effective length of time and, conversely, if
the multiplication is decreased, the reaction goes more slowly and a
neutron exists over a shorter period of time. Therefore, ¢ is assumed

to be approximately constant.



The quantity p in Eq. (2.1a) is defined as the reactivity of
the system, (k-1)/k, or the fractional change from unity of the effec-

tive multiplicatdon factor.

The Delayed Source in Coupled Systems

The coupling effect in each core is assumed to appear in the
form of a source due to neutrons coming from all ether cores in the
system. Two assumptions are inherent in this formulation., First of
all, it is assumed that for a given arrangement of cores, the rate of
entry of neutrons into one core is directly proportional to the rate of
loss of neutrons for the other cores. Secondly, it is assumed that the
effective core-to-core transit time is the same on the average for all
neutrons participating in the coupling process between two given cores.
These premises are consistent with the lumped parameter model. Because
all neutrons in a given core have the same energy and spatial distri-
bution, they must exhibit the same average behavior in all nuclear
processes.

If Qy § 1s the coupling coefficient of proportionality from the
jth to the ith core, and 1if Tij is the delay time associated with this

coupling, the total source in the ith core of an N-core array is

N
s, = z o ageengy (2.2)
j=191

In general, o&j - 031 and Tij - Tji , because the coupling effect is
the same in either direction between any two cores. Also, all the O's

and all the T's are equal in any completely symmetric array due to the



fact that once the nuclear and neutronic properties of the system are
fixed, the coupling process depends upon the geometric properties of
the array. This is probably more true of o than of T. Geometric atten-
uation contributes almost exclusively to changes in o with separation
if the neutron densities are the same in the cores. On the other hand,
the time of flight of neutrons between cores is much less than the time
required to escape from one core and enter another as there is no ma-
terial between the cores. The coupling process is illustated in Fig. 2.1
for an asymmetric three-core array. In this case, all o*s and all T's
are equal except 013,31 is less than 12,21 °T 33 32 and T13’31 is
greater than T12’21 or T23’32 .

The basic neutron kinetics equations for coupled-core systems

are, due to the substitution of Eq. (2.2) into Eq. (2.1),

N
- 10
8 (0 = 220 - i) +aci(e) + Z Hong(emyyp (2.3
' Jmlgi
Cy(e) = .—% ng(£) - AGy(E) (2.3b)

The cores are assumed to have identical nuclear characteristics, so
B, £, and A are the same throughout the system.

Equation (2.3) can be obtained from Eq. (2.1) also by means of
a reactivity concept of the coupling effect. Seale (1964b) presents a
computational method for obtaining theoretical values of o and T,
The result is expressed as a change in k with respect to unity. This

change in k in the ith core is shown to be proportional to the ratio



FIGURE 2.1.
NEUTRONIC COUPLING



of the surface neutron fluxes, hence the average neutron densities, in

the {th and jth cores. The total coupling reactivity in the {ith core

is then
N n, (t-T,,)
!
oo m ), oy (2.4)
j-l*i .

When the source term in Eq. (2.1) is eliminated and the reactivity re-
placed by (2.4) plus a generalized reactivity term, Eq. (2.3) are the
result., The arguments are slightly different in concept but they yield
the same system equations.

Higher order coupling effects are neglected in this study.
Neutrons could escape from one core, reflect from one or more other
cores, and return to the original core. It 1is highly doubtful that the
magnitude of this self-coupling effect is appreciable due to at least

one extra order of geometric attenuation.

System Heat Transfer Equations

Equations (2.3) represent the behavior in time of a core at very
low power levels. In a power reactor, a coolant flows through the core
to remove the generated energy. As the temperature of the core increases
at higher power levels, the intrinsic reactivity effects appear. The
density of the core decreases with an increase in temperature. As a
regult, it is less probable that a neutron will experience collisions
with ether nuclei, including the fuel, and more probable that a neutron
will escape from the system. Hence, the multiplication of neutrons de-

creases, This effect is the negative temperature reactivity effect.

10




Because a component of the reactivity is a function of tempera-
ture, it {s necessary to describe the dynamic variations in the core
temperature., The lumped parameter or point model for the heat trans-
fer processes could lead to some difficulty because the temperatures
and heat transfer parameters vary strongly within the core of a high-
power reactor. It is of great importance to have proper effective values
of these paramsters to yield a fairly accurate model,.

Over a period of time, the net accumulation of energy in a core
is equal to the total energy generated due to fission minus the total
energy removed by the coolant. Per unit time, the generated energy is
the power P(t), which is proportional to the neutron density. The rate
of energy removal is proportional to the difference between the average
core temperature and the average coolant temperature T(t) and T.(t),
respectively. These temperatures represent values relative to the zero

power values, The energy balance for the core is

t t

/P(t)dt -f H[T(t) - T.(t)]dt = MC T(E)

o] (o]

which, when differentiated with respect to time, yilelds
MC,T(t) = P(t) - H[T(t)-T.(t)] . (2.5)

MC, is the product of the mass and specific heat of the core, and H
is the effective heat transfer coefficient between the core and the
coolant,

A simjilar energy balance for the coolant yields

@C, T (t) = H[T(t)-T ()] - wC T (t) - (2.6)

11



The mass flow rate is w, and the mass heat capacity of the coolant {is
mC.. It is assumed that the average core and coolant temperatures are
proportional. If mC. is very small, it can be seen from Eq. (2.6) that
the assumption is valid. In a nuclear rocket, where gaseous hydrogen

is the coolant, the quantity mC. is small (Mohler, 1965). The mass flow
rate of the coolant is constant because the system under consideration

is autonomous. A combination of Eqs. (2.5) and (2.6) under these assump-

tions results in the core temperature kinetics equation,

T(t) = ;-(1: P(t) - WwT(t) (2.7)

BwC,

, the inverse of the characteristic heat exchanger
MC,. (H + wC,)

where w 1is

time constant.

Intrinsic Reactivity Effects

The intrinsic reactivity effect is described under the assumption
that an increase in core temperature causes a net decrease in neutron
multiplication or the introduction of negative reactivity. It is sup-
posed that this effect can be approximated by a linear function of
temperature, The overall temperature reactivity effect is quite compli-
cated due to changes in nuclear cross sections, material densities, and
system dimensions, but generally the linear negative relationship pro-
vides an adequate description (Weaver, 1963, pp. 101-103).

A nuclear rocket is cooled by gaseous hydrogen, a strong neutron
moderator, so temperature-induced coolant density changes affect the re-
activity. The hydrogen density effect is a positive contribution, but

it 1s roughly proportional to the inverse square root of the core

12




temperature (Mohler, 1965). Therefore, the magnitude of the reactivity
effect decreases with increasing temperature. Regardless of this posi-
tive #nttinsic reactivity component, it will be supposed that the over-
all effect is negative and proportional to the temperature.

The temperature-dependent portion of the total reactivity is

p(T) = - CyT(t) , (2.8)
where Cp is a positive constant of proportionality. If the fuel and
moderator of the core constituted a homogeneous mixture, a prompt tem-
perature effect model might be assumed. In this case, a change in power
would result promptly in a corresponding change in temperature such that
the intrinsic reactivity would be proportional to the power. Although
this approach does not lead to a particularly accurate description of a
practical system, it is useful for obtaining a rough prediction of the
behavior of the system. Because the temperature kinetics equations are
eliminated, the effort required to analyze such a model is minimized.

The mathematical description of the prompt reactivity effect 1is

o(P) = -CpP(t) . (2.9)

State Variable Representation of the System

The methods of treatment and the general discussions that follow
presuppose that the nth order dynamic system is representable as n first
order ordinary differential equations. Equations (2.3) and (2.7) are al-
ready first order differential equations. The time delay term causes no
difficulty since ordinary differential equations are defined as equations

containing the derivatives of the unknowns with respect to one real

13



variable. The.system equations therefore meet the above requirement
as written.

Nevertheless, a further requirement is necessary. Questions
of stability are considered with reference to some equilibrium point of
the system. If the system unknowns are transformed such that they van-
ish at equilibrium, so do the derivatives of the variables. This de-
fines the equilibrium point, which may be taken to be_the origin of an
n-dimensional Euclidean vector space. The state of the system is then
completely described at any time by a vector which has as its componengs
the new state variables. Stability may be discussed in terms of the
region in this state space within which the system, if perturbed from
the origin, returns to the origin, If the system exhibits this behavior,
it is asymptotically stable.

The variables which translate the system operating point to a

zero polnt are
P(t)-P,

x(t) = P

C(t)-C,
y(t) = g (2.10)

T(t)-T,

z(t) = T,

P, is the equilibrium power, and C, and T, the equilibrium delayed
neutron precursor density and average core temperature, respectively.
The neutron density, it is recalled, may be written in terms of the

power level.

14



The variables are normalired with respect to the operating
level for convenience. One very good reason for normalizing is that
the state variables now represent fractional changes in the actual sys-
tem variables. Second and higher order terms in the state variables
can be neglected directly if the linearized equations are desired.

An interrelation of the equilibrium values of the variables
is found by setting the derivatives of Eqs. (2.3b) and (2.7) equal to

zero. These relationships are

% Pio = NCio

(2.11)

P

mc, fio =T

io
The total reactivity in the absence of external inputs is
P3 ™ Pioo t+ o(T,F)

where p4,, 1s the reactivity required to maintain criticality in the
ith core at the operating point, and p(T,P) is the intrinsic reactivity
effect, a function of T or P . Under the transformations (2.10), the

reactivity is
pi = pioo + 510 + 51(}(,2) (2.12)

where By, the intrinsic reactivity contributed at the operating point,
and 84(x,z) is the component of the intrinsic reactivity which vanishes

at the operating point.

15



The system equations for the ith core are, from the

formations (2.10),

84 (x,2)

ii(t) - D)

[14x, (8] - % xq(t) + % yq(t)

N N
P Q. P o,
[o) i (o) i
). a2 ey
Juelk i Jmlgi

yi(t) = ax () - ayy(t)
ii(t) = wxq(t) - wzi(t)
and the value of py,, 18

N
P
pioo"sio‘i O’ijfﬁ .
11

trans-

(2.i3a)

(2.13b)

(2.13¢)

Note that the coupling terms contain the ratios of the power levels in

the jth cores to that in the ith core., Clearly, the system can operate

in equilibrium with all of the cores operating at different power levels.

The reactivity component 8i, vanishes at zero power, so pigyo is

negative at zero power. This verifies the individual subcriticality of

the cores at this point.

The specific intrinsic reactivity components are, for the case

in which temperature and power are proportional,

810 = - CpPyo

Si(x) = -CPPioxi(t)

16
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and, for the actual temperature dependent case,

840 ™ -Cr Tio

81(z) = -Cr Tyozi(t) . (2.15)

Equations (2.13) meet the requirements for the state variable
notation. The derivatives vanish at the null point of all the variables.
Also, the derivatives vanish when x m y = z = -1 , This i8 to be expect-
ed since this point is zero power, or the case when the system is com-
pletely shut down. It is obvious that Eq. (2.13a) is nonlinear due to
the term

ﬁ(—j’—z) [14x(0) ] . (2.16)

The equation is quickly linearized by writing the term (2.16) as

51 (x) z)
£ .

Although this nonlinearity leads to some difficulty, it cannot be
stressed too heavily that the most peculiar aspect of this problem is

the presence in Eq. (2.13a) of the unknown with the retarded argument.

Vector-Matrix and Functional Notation

There is no point at this stage of the development in discussing
a specific problem using the vector notation. There are, however, some
general notational problems. Consider first the case in which there is
no time delay. Ordinarily, all the equations are written in terms of
one subscripted unknown, for example, x; . In this case, the vectorial

description of the system is

17



=A@ x

where x and x are column vectors and A(x) is a square matrix, shown

to be nonlinear in general.
For the coupled-core problem, three unknowns, x, y, and z are

used in order that the subscripts be reserved to denote the specific

core under consideration. The notation is

[x)}.’:zj -ﬁ (’_‘_,f_) [:x:y,vz] .
The equations with time delay can be written in the completely

general functional form

[2,9,2] = i [ x(8),y(t),z(t) ]

where the variable s includes all arguments t - T < S < t, where T is
the maximum delay that appears in the equations. j& is a general

functional of the variables with their various arguments,

Some Numerical Values for the System Parameters
parameters listed below are based

The numerical values of the

upon those used by Mohler (1965) in studying nuclear rocket systems.

The values used here are rounded off to some degree, but represent, for
the most part, typical parameters.

P, design = 2000 MW

B=6x 10°3

L =4 x 107° sec

A = 0.1 sec”!

18



1 = 1.5 sec
w

CpPo or CpI, = B at 2000 MW .

The coupling parameters are calculated by Seale (1964b) for ROVER type
rocket cores. At a separation distance of fifteen feet for two such
cores,

a=6x 107

T =3 x 10'4 sec .

The coupling parameters could be extrapolated to different separation
distances by assuming the « varies geometrically, or inversely with the
square of the separation distance,and that T is proportional to the
separation. The general approach to the problem will be to seek the

effect of variations in 0 and T on the system stability.
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Chapter 3
STABILITY AND THE SECOND METHOD OF LIAPUNOV
FOR TIME DELAY SYSTEMS

This chapter deals with the novel aspects of the stability
problem for time delay systems. The primary goal of course is to
adapt the Second Method of Liapunov to systems with time delay. It
is necessary first, however, to discuss the basic concepts of the
Second Method for ordinary systems. The reasons for the inadequacy

of the approach as stated become apparent.

The Second Method of Liapunov for Ordinary Systems

The idea of the Second or Direct Method of Liapunov is to
determine stability for a system without an actual knowledge of the
solutions of the system. The solutions to nonlinear systems are not
generally available} consequently, the Second Method is especially
appropriate for studying nonlinear stability. The tool for solving
the stability problem is the Liapunov function V(x) , a scalar func-

tion of the vector x(t) for the general nonlinear autonomous system
x =A@ x (3.1)

For simplicity, V(x) will be denoted as V hereafter.
The function V, if it is to be a Liapunov function, is a posi-
tive-definite function according to the following definition (LaSalle

and Lefschetz, 1961).
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Definition 3.1 -- Liapunov Function

If a function V s

(a) continuous with continuous first partial
derivativés in region H about the origin
of the state space,

(b) positive in H except at the origin, where
V(0) = 0, (V is positive-definite),

then V is a Liapunov function,
The theorem for asymptotic stability is (LaSalle and Lefschetz, 1961).

Theorem 3.1 -- Asymptotic Stability

1f there exists in some region H about the origin of
the state space, a Liapunov function, V, and if V, the deriva-
tive with respect to time, is negative-definite along solutions

of Eq. (3.1) in H, the origin is asymptotically stable.

The physical interpretation of Theorem 3.1 is illustrated in Fig. 3.1.°
The equation V = const. represents a series of closed surfaces about
the origin. If V for the system 1Is negative-definite, the state of the
system for all initial conditions enclosed by H lies on successively
smaller V's toward the origin. The region H for a linear system is in-
finite in extent ‘and the stability is global.

The conditions for asymptotic stability by the Second Method
are only sufficient. Hence, the fact that stability cannot be proved
does not lead to the conclusion that the system is unstable. The pro-
blem is to select a suitable V such that asymptotic stability can be

discovered 1f the system 1s asymptotically stable. There are obviously
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a great many V's which meet the conditions of Definition 3.1 and Theorem
3.1 for any stable system.
An important V, especially for this problem, is the general quad-

ratic form n

V= Z bj yx1x4 (3.2)
i,i=1
Sylvester’s Theorem (LaSalle and Lefschetz, 1961) gives the conditions
for the sign-definiteness of a quadratic form. This will prove extreme-
ly useful.

Theorem 3.2 -- Sign-Definiteness of a Quadratic Form
n

The function ;ﬁ bijxixj is positive(negative)-definite
i,j=1

if the successive principal minors of the symmetric determin-

ant lbijl are positive(negative).
The second order quadratic form
b 2 2b b 2
Vo= brixy + 2byoxgxp + bop %2

is positive definite by Theorem 3.2 1if
by >0
2

byiPyp - by >0

The general matrix notation for the quadratic form is

V=x'Bx (3.3)

where B is the symmetric matrix
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b1y b12

bi2 b2

and 5? is the transpose of the column state variable vector x .

The mechanics of solving the stability problem using a quadratic
form include a linearization of the Egs. (3.1). ﬁ is then constrained
to be negative-~definite along solutions of the linear system. This
process determines the admissible values of the bij's. The next step
is to calculate V for the nonlinear system, which is, from Eq. (3.1) and
(3.3),

v=x"B [a@zx] + A@x]T B x (3.4)

Eq. (3.4) is then examined to find the values of x for which 6 is
negative. The region H in the state space is the interior of the larg-
est V which fits in the region 6 <0

A method whereby a quadratic V is essentially generated is found
by diagonalizing the linearized Eqs. (3.1) and describing the system in
its canonic variables, Z. Eq. (3.1) is separated into a linear plus a

nonlinear component,

x=Ax+1F ® (3.5)

with I the square unit matrix, and F(x) the column vector function of
the assumed separable nonlinearities. The solutions to the linear sys-

tem take the form

exp (¥it)
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where the *i's are the eigenvalues which satisfy the determinantal
equation

A -vI|=o0.

If all the eigenvalues have negative real parts, the solutions decrease
exponentially, therefore the system is asymptotically stable.
The linear transformation
x=PZ (3.6)

Tesults in a linear system representation

-1

Z=P APRZ .

]

Furthermore, 1f

Plap=A

where Zl is a diagonal matrix with the eigenvalues as its elements, then

the variables Z are the canonic variables of the linear system. The V

n
v-.Z_T_Z.-yzi2 ’
—

im

function

—

when differentiated with respect to time, yields

n
. T 2
Ve2z A_;-zy vy 24
—
1ml
Clearly, V is positive-definite and since the elements of ZL are nega-
tive by the stability requirements of the linear system V is negative-
definite. Thus asymptotic stability is concluded. The final steps are

to transform back to the real system variables x by means of Eq. (3.6),
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add the nonlinear terms to V , and find the region H

This approach is at least methodical. However, considerable
difficulty in the mechanics of the method can be envisioned. The labor
involved in finding the eigenvalues and the P matrix along with its in-
verse, would be prohibitive for high order systems. This approach will
be useful as a guide toward drawing conclusions en the general proper-
ties of quadratic V functions for the practical problems to be consider-
ed.

A non-quadratic V function could be sought for the general non-
linear system. Specifically, the Variable Gradient Method (Schultz,
1962) assumes a general gradient of V from which 6 is found to be

Vegvix .
V is constrained to be negative-definite by a proper choice of the co-
efficients in YV . Since these coefficients may be functions of the
state variables, a line integration of YV may yield a non-quadratic
or even a non-algebraic V . Although this method may yield excellent
results ordinarily, it will be seen that only quadratic V functions can

be easily extended to include time delay problems.

An Attempt to Extend the Second Method to Time Delay Systems
In order to illustrate dramatically the difficulties involved
in this problém, an attempt is made to extend the Second Method direct-

ly to the first order time delay system
x(t) = - ax(t) - bx(t-T) . (3.7)

The quadratic V is
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V = xz(t)

and the time derivative is

2V = -2 x2(t) - bx(t) x (£-T) (38)

The method fails. Due to the cross product x(t)x(t-T), no conclusion
as to the sign-definiteness of V can be drawn.

Some insight can be obtained by actually solving Eq. (3.7). It
is immediately apparent that a solution for t > O depends upon known
values of x for all -T < t < 0 . This is an important difference between
gystems with and without time delay. The solutions to differential equa-
tions without the retarded argument depend only upon the initial con-
ditions or values of the variables at t = 0 . The solutions to time
delay equations, however, depend upon entire initial functions defined
over -T < t < 0. Thus the solutions to two time delay equations could
have the same value at the initial instant. t = 0, but describe com-
pletely different trajectories due to different initial functions.

The equation (3.7) is solved by step-wise integration over each
interval of time of length T starting at t =0 . If x =1 for -T < t <0,

the result is

Xp(t) = (3"

n n
b LR e-e-1 1] L) I @) % dexp § -a [t-(k-l)T]}
caply a

kel jml >(7.1—1)5

where x,(t) is the solution for the time interval (n-1)T < t < nT.
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The general form shown is obtained by induction from the solutions for
a few time intervals.

The solution of Eq. (3.7) for awb=Tw=l is shown in Fig. (3.2).
Because this 1is a first order system, the oscillatory behavior is most
unusual. Pirst order systems with no time delay exhibit purely real
exponential behavior. Only second or greater order systems with no de-
lay may oscillate.

Because x oscillates, V = x? also oscillates. Therefore, \
must be positive part of the time, even though Fig. (3.2) suggests an
asymptotically stable behavior. The specific solution in time of V for

this example appears in Fig. (3.3).

Modification of the Second Method for Time Delay Systems

The Second Method of Liapunov must be generalized to include
cases such as the one examined in the previous section. In reality,
this does not lead to a modification of the fundamental concepts of the
Second Method. The idea still is to find a positive-definite Liapunov
function and to draw asymptotic stability conclusions based upon the
negative-definiteness of its time derivative. The changes are made
within the asymptotic stability theorem. The V function for an asymp-
totically stable system with delay must eventually decrease toward the
origin of the state space, even though it does not demonstrate a mono-
tonic behavior. By way of comparison with systems with no delay, con-
sider an ordinary damped spring-mass system, A suitable V for this case
is the kinetic plus the potential energy of the mass. Even though the

system state variables, position and velocity, oscillate, the total
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energy or V decreases monotonically for all time.

Before asymptotic stability is considered, it is instructive to
discuss ordinary stability or boundedness of time delay systems, This
approach provides some insight to the difficulties involvéd. Driver
(1962, P- 405) states an important lemma dealing with the relationship
betweén time delay systems and ordinary systems.

— Lemma 3.i |
If there exists a continuous, non-negative function

w(r) for t >0, r > 0, and a continuous, non-negative function’

V(t) for t > - T and if:

(a) G(t) <w [V(t)] whenevef V(s) < Q(t) for all
t-T <SS <<t ;
(b) ry > sup V(s8) for -T < S <O ;
(¢) the solution r(t) of r(t) = w[f(t)] , T(0) = rg,
exists for t >0 ;
then
V(D) < r(t)
for all t >0 .
The lemma is proved by Driver (1962, pp. 405-406). Lemma 3.1 states
‘that if the derivative 6f V is bounded by w whenever V is growing, then
all solutions V are bounded by the function r. This is shown in Fig. 3.4.
Driverts stability theorem is (1962, p. 417) néw stated,

Theorem 3.3 - Stability of Time Delay Systems

v

If the function w(t,f) is non-negative and if there exists

a function V(t,x) defined whenever t > -T and x| < H in E
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such that

(a) V(t,0) = O ;

(b) Vv(t,x) is continuous in t and locally Lipschitz with respect

to x (for all 0 < y < « and every compact set F in H there
exists a constant Ly,F such that

V(t,x0) | <Ly p [x1 - %2

whenever -T < £ <y and x; , X, in F) ;

lv(t)xl)

(c) V(t,x) > wl(x), a positive continuous function for all
Ikk|] < H except at the origin of E, and
(d) definingV(t,x(s)) = V(t,x(t)), we have
‘\'/*(c,x(s)) < wlt,v(t,x(t))]
whenever t > 0 and x continuous in H from -T to t, and
(whenever) V[s,x(s)] < V[t,x(t)]
for all t - T <s<t,
then the solution x(t) = 0 of (#) is stable to the right of
t =0.
This theorem is quoted from Driver'!s paper except that he does not use
the symbol x for his system dependent variable and he considers time-
dependent delays instead of the constant T. The notation (#) refers
to the system equation
x(t) = I [ x(s) ]
and, accordingly, ﬁ* is the derivative of V along solutions of the
system.
Theorem 3.3 also considers the non-autonomous or time-varying

cases. In this study, such systems are of no interest. Hence, condi-

tion (c¢) merely means that V is positive-definite; then condition (a)
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is always satisfied.

The notation |jx| refers to the norm of x or the maximum length
in the region H. These new notational features will be used henceforth.

From Lemma 3.i and Theorem 3..3, it is apparent that the only
useful w(V) is w = 0 . In this case, all solutions to the delayed
system are bounded by a constant. Equation (3.7) is considered in
order to illustrate the application of Theorem 3.3 to time delay pro-

blems. V 1s chosen to be

V-xz,

and along solutions of (3.7),

% Vo= - ax2(t) - bx(t)x(t-T) .
Whenever v [x(s)] < v x()],

x2(s) < x2(t) ;
hence

[x(s) | < Ix(t)|

for all t-T < S <t . It is clear that

% V < -ax2(t) + |bx(e)x(t-T) |

and whenever _VEX(S)] < V[x(t)} ’

%‘}'S -[a- lb'] x2(t) .

Because V = xz(t) s

W(V) = -2[&- Ibl] v,
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thus, by Lemma 3.1, all solutions V are bounded by the maximal solution
of

V=20

if a = Ibl , or w(V) = 0 ., The solution of V = 0 1is
V = sup xz(s) H -T<8<0,

so all solutions to Eq. (3.7) are contained in the region
[x(8)| < sup |x(s)| ; -T <8<0

or within the region bounded by the maximum value of the initial con-
ditions of Eq. (3.7).

The conclusion is that the solutions of the gystem are stable
under the conditions given independent of the delay time T. 1In the
general case, the variable s describes all values of the delay from
zero up to some maximum value T if several variables are delayed.
Again, this theorem concludes stability but not asymptotic stability,
although there may be solutions in the region V < r, which are asymp-
totically stable.

It appears on the basis of Theorem 3.3 that asymptotic stability
is difficult to show. Driver®s asymptotic stability theorem (1962,

p. 422), however, makes this task less difficult.

Theorem 3.4 - Asymptotic Stability of Time Delay Systems

Consider equation (%) with the assumption that é# (t,x(s))

- a" (t,x(s),g(t)) where g(t) —> 2 as t —»» , If there exists a
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function V(t,x) defined whenever t > g(0) and x in H such that
(a) V(t,x) <W (x), a continuous function for all x in H
with W(0) = 0 (an infinitesimal upper bound);
(b) V(t,x) is continuous in t and locally Lipschitz with
respect to x (as defined in Theorem 3.3); |
(c) v(t,x) > wl(x), a positive continuous function for all
X in H except at the origin of E, and
(d) There exists a continuous, non-decreasing function
f(r) > r for all r > 0 and a continuous function w(x) > 0 for
all x in H except at the origin of E such that
G*Eﬁ,x(s),g(t)] < -w [x(t)]
whenever t > 0, x continuous in H for g(t) < s <t , and (when-
ever)
V[s,x(s)] < f{V[t,x(t)]i
for all g(t) <s <t ,
then the solution x(t) = 0 of (#) is uniformly stable and
asymptotically stable to the right of t = 0, If g(t) >t - T
for t > 0, where T > 0 1s a constant, then the asymptotic sta-

bility is uniform.

The theorem as quoted 1s proved by Driver (1962, pp. 422-424). 1In

Theorem 3.4, only bounded types of delays are considered. In this study,

specifically, g(t) = t - T . As before, because only the time-invari-

ant case 1s of interest, conditions (a) and (c) merely assert the

positive-definiteness of V . When this 1is true, the functions W(x) and

wy (x) and identical to V(x).
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The important condition of Theorem 3.4 1s condition (d). This
condition requires that 6 is negative-definite whenever £ {V[x(t)]} is
greater than V has been in the past, back to t - T . This condition
admits V's which decrease nonmonotonically. Examples of stable and
unstable behavior are given in Fig. 3.5 for £f(V) = V/qwith 0 < q < 1.

Krasovskii (1963, p. 157) gives an asymptotic stability theorem
which 1s incorrectly stated (Driver, 1965). Krasovskii appears to re-
quire that the delay inequalities V[x(x)] < f(LV[x(t)lg hold as a con-
dition of the theorem. That this is not true can be seen from the ex-
ample figures. Theorem 3.4 retains the generality of a theorem for
systems with no delay. In this event, the delay inequalities are not
needed to show the negative-definiteness of 6 because V has a monotonic
behavior (Driver, 1965).

As an example, again Eq. (3.7) is considered. If

Vom x2
then
le} = - ax2(t) - bx(t)x(t-T).
Whenever
vix(e)] <z v[x®] , (3.9)
Ix(s)| <2 [x(e)] .
Jq
So -w(x) is
ww(x) = -(a - Blyx2¢e) (3.10)
q

which 1s negative-definite for

afq > [b] . (3.11)
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Thus for the range of parameters (3.11), V eventually decreases for
allt - T <8 <t and the system is asymptotically stable independent
of the initial conditions and the magnitude of the delay. The parame-
ter q is arbitrary subject to 0 < q <1 ; but q very close to unity in
(3.11) leads to the greatest range of parameters for which (3.10) is
sign-definite.

Razumikhin (1960) suggests a substitution which provides sta=
bility results as a function of T. The idea is based upon the use of
the mean value of the solution over any t - T<S <t . If x(o) is the
mean value of x(8) over the interval, the area under the curve equals

the product of the mean value and the width of the interval, or

t
Tx (o) = \/p x(s) ds (3.12)
t-T
, . dx do
The time derivative of Eq. (3.12) gives, since x(o) = 5 dt
x(t-T) = x(t) - T x(o) . (3.13)

The technique is to write the original system equations in terms of o .
In this case,

x(0) = -ax(g)-bx(c-T) (3.14)

If Eq. (3.14) is substituted into Eq. (3.13), it is found that
x(t-T) = x(t) + aT x(o) + bT x(o-T) . (3.15)
Next, Eq. (3.15) is substituted into V , which yields

V = -(atb)x2(t) - abTx(t)x(o)-b2Tx(t)x(c-T) ,

N
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and, as before,

%v < -(a+b)x2(t) + |abTx(t)x(0) [+]|b2Tx(t)x(o-T) | . (3.16)
Now there exist two inequalities of the form (3.9) -- one for the inter-
val 6 - T to t, and the other from o - T to o . The choice of q such
that
x2(0-T) <\[% x2(t)
and

x2 (o) <\/§ x2(t)

for any given value of T, describes a more restricted class of curves

which satisfies the delay inequalities. 1Ineq. (3.16) now becomes

. 2
V<- [(a-l-b) -M-u]xz(t) s

NN

N =

which consists of the two separate cases,

I < - [a(1-bT)+b(1-bT)] x2(t)

N |
<l

for a >0, b >0, and

v < - [a(14bT) + b(1-bD)] x2(t)

(ST
<

for a<0 , b >0 . Note that q is chosen close to unity.

The negative-definiteness of the right sides of these two in-

' equalities is ensured 1if
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aT >0 , 0<bT <1l ;

(3.17)
b>0, '31(—'%)9— <aT <0

Fig. 3.6 illustrates the region of stable parameters from (3.11),
the case independent of the delay. Figure 3.7 shows the result obtained
in (3.17) along with the total reglon obtained by superimposing the two
results. This technique is valid due to the sufficiency of the sta-
bility conditions provided by the Second Method. The maximum value of
-aT in Fig. 3.7 occurs at b = V2 -1 and equals 2/2 - 3 . The results
are seen to be conservative while providing a good estimate of the true
region.

The boundary of the exact region shown in Fig. 3.7 and 3.8 is
found by taking the Laplace Transform of Eq. (3.7) and solving the re-
sulting characteristic equation. If p = jw is the Laplace Transform
variable, the equation is

p+a+bexp(-pT) = 0
Since

exp[—ij] = coswT - j sin wT
the parametric equations for the roots of the characteristic equation
are

aT = -wT cot uwT ,

(3.18)

bT = [(WT)2 + (aT)2]1/2

and for T = O,

p = -(atb) .
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In order that all solutions decrease exponentially, all roots of the
characteristic equation must have ﬁegative real parts. The lower bound
is then
(a+b) >0
and the upper bound results from Eq. (3.18).
An approximate answer results if the lowest order Pade Approxi-
mant (Weaver, 1963, pp. 75) is used. For example, 1if

2-pT
exp(-pT) » =57

the resulting algebraic characteristic equation has roots with negative

real parts if
aT > - bT

bT < 2 + aT

The exact and approximate regions of stable parameters appear
in Fig. 3.8. The approximate approach results in an overestimate of the
region of stability. This is a highly undesirable situation if a prac-
tical problem 1s under consideration. The exact result can be found
from the characteristic equation only 1if the system is linear. For this
reason and because the process becomes extremely unwieldy for high order
systems, the approach is of little interest. The point is that any such
approximation should be ruled out on practical grounds, The delay term
could in fact be represented as a truncated Taylor series

x(t-T) & x(t) - Tx(t)

and incorporated into a nonlinear system. Again, there can be no guaran-

tee as to the quality of the result.
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The concept of a Liapunov functional should be considered
briefly because it seems at first to be natural to the time delay pro-

blem. Krasovskii (1963) suggests the use of the form

t
V = x2(t) + a ‘jp xz(s)ds ,

t-T
for the system (3.7). The time derivative along solutions of (3.7) is
Vo - axz(t) - 2bx(t)x(t-T)-ax2(t-T)
which is negative-definite if
a>0; Ibl < a

This is the same result as found previously using V = x2

This approach
1s natural because it yields a negative-definite V for all time.

The difficulty with the method 1s twofold. First, x(t) and
x(t-T) are treated as two distinct state variables in 6 . This in-
creases the dimensionality of the system. Secondly, it appears that
for a nonlinear problem, no region of stability can be found due to the
unstationary nature of V. An actual solution in time must be found to

evaluate V and therefore the region of stability. The method is useful

only for low order linear systems.

Higher Order Systems

Ineq. (3.9) is a relatively simple relationship for the first
order case. If the system is, for example, second order and if
V o= x12(t) + x22 (t)

then Ineq. (3.9) is
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x,2(s) + x2(s) <‘% Exlz(t) + xzz(t)].

Because the delayed variables appear in the equations as xl(l) or
x,(s) alone, it is necessary that the inequality be rewritten to ob-
tain the variables in an isolated, useful form. In this case it is
clear that

x12(8) < [x,2¢8) + x,2(v)]

Q-

and

x,2(s) < % [x,2¢t) + x,2(8)]

Ix1(8) | or [xp(8) ] < J-‘l;j/xlz(t) + x2(e) .

The relationship
xlz + x22 < (lel + |x2l)2

must hold due to the addition of positive cross products on the right

side. Therefore

[x1(8) | and [xy(s) |

are independently less than

3& (x| + [x(0) ],

and in general, for an nth-order system,
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n
% (8) | <T<11 Elxj(t)l (3.19)
=1

describes a larger class of curves which satisfies the original in-
equality. This is a less restrictive condition mathematically; but
the number of solutions which actually satisfy (3.19) may be so small
that the range of validity of the results is severely restricted.

Furthermore, if V is the general quadratic form
xTBx,
the class of curves which satisfy the inequalities is enlarged further.
For example, 1f

V = xl2 + x4%, f x22 s

the only way that xj or x; can be obtained separately such as in Ineq.
(3.19), 1is to restrict the sum of the squares of x(t) to be greater than
the sum of the squares of the x(s). The sum of the squares of either
variable is the square of the radius of an n-dimensional sphere, thus
it is necessary to find the ratio of the largest to the smallest sphere
which uniquely intersects the n-dimensional elliptical form.

The process is shown geometrically in Fig. 3.9 for the second

order case under consideration. The ratio of the radii-squared is 3 ,

therefore the inequality relationship is

| or @ < 2 [ ol + ol |

Clearly, the additional factor J3 will cause the method to become re-
strictive if the delay inequality substitutions result in positive quad-
ratic terms in V. This is, in fact, the case. In the general nth-order

case, the spherical intersections of the quadratic space satisfy
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the spherical intersections of the quadratic space satisfy

xT

Bx=x'r21x ,

or

|B-r21 | =0,

(3.20)
and the inequalities are
7 n
T
lxi(a)[<J—i — '7 [xy(t) | (3.21)
q min j—i

where rp,y and rpip are the maximum and minimum solutions to the deter-

minant (3.20). Again for the case illustrated geometrically,

1 1
B= 2
1 1
2
and
2 1
2 1-r 2
B -2l = | | =0
2 1-r
or
2 = 1, 3

It 18 stressed that while Ineq. (3.21) constitutes an approxi-

mation, the approximation is made within the framework of the Second

Method. Therefore the sufficlency of the stability conditions are

always ensured.
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This development also demonstrates the advantage of a quadratic
V. If the B matrix is a function of x , the radii relationships also
depend upon x. The meaning of this is that the actual shape of V

changes with x , so there is no consistent geometrical relationship

‘between the unique gpheres and the extreme points of V . If the solu-

tions to Eq. (3.20) are negative or complex, there are no satisfactory
relationships. However, 1if the V functions represent real closed sur-

faces, there should be real solutions to at least the third order case.
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Chapter 4

COUPLED-CORE STABILITY

It is necessary first to study the stability of a simplified
coupled-core model. The method set forth in the preceding chapter for
time delay systems relies upon a quadratic Liapunov function. This
type of V function works quite well for the first-order linear example.
However, it is pointed out again that by necessity the method is restric-
tive for higher order problems. The effecF of system nonlinearities

upon the method, moreover, remains to be discovered.

A Simplified Model

Even the simplest coupled-core model results in a difficult
stability problem. For a system of two identical cores, if delayed neu-
trons are neglected and if the intrinsic negative reactivity effect is

proportional to the power, Eq. (13a) describes the system as follows:

. -CpP10 a P20 a P20
x,(t) = x,(t) [ 4%, ()] - & &= x,(t) + & <2 x,(t-T)
1 y/ 1 [ 1 ] J P10 1 £ Pyo 2 ’

P P
a 10 o ~10

t 1+ t - o —— t + = — -
%9 ( )[ x5 (t)] 7 Top x2(t) ? Pop x1(t-T)

-CpP20

X9 (t) =

The coupling coefficilents and delay times are equal between the cores.
Although the delayed neutrons are neglected, it is convenient
from a notational standpoint to describe the intrinsic reactivity and

coupling contributions to the equations in terms of % , a measurable
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and important parameter in any physical reactor system. If the two

cores are in a design operating state with identical power outputs,

CpPyg . CpP20

m k ﬁ
P) ) P

)

and

P
a 20 Lok %

£ Pyo 2 c

2

where kp and k. are the fractions of B/% contributed by the internal re-

activity and coupling, respectively. The kinetics equations become
x1(t) = - kp, % x1(0) [14x, ()] - K % x1(t) + k¢ % x9(t-T)

%2 (1) = -k, % x5 () [ ()] - ke %xz(t) + kg %xl(t-T)
(4.1)
where xj and X, are the fractional changes of the power from equilibrium

in the two cores.

Stability Without Time Delay

No reference is made to the time delay in choosing a quadratic
V function. This implies that the stability investigation necessarily
begins with an analysis of the system with the delay neglected. Addi-
tionally, the approach to the problem via the quadratic V function re-
quires that the linear system is stable.

Equation (4.1) with T = O, are seen to be representable in the
general matrix form (3.5) since the nonlinearities are separable. The

linearized equations are
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1.{1 - - % (kp-l-kc)xl + % koxo .2

Xy = - % (kptko)x, + % k Xq

The argument is deleted from the state variables for convenience, because

T = 0 . The nonlinear portion of the i-th equation 1is

2
-kp f x, (4.3)

It is instructive to make use of the canonic system representation for
determining a V function. 1In the second-order case, this is a relative-
ly simple procedure, providing a quick determination of linear stability

through the eigenvaiues. The linear system A matrix is

—(kp+kc) k
A=B
= 2
ke = (kp+ke)

and accordingly the eigenvalues satisfy
2 B By2 -
v+ 2 5 (kptke) v+ (5)T kp(kp + 2ke) = 0

The solutions to the eigenvalue equation cannot be positive or zero as
long as kp > 0 . Therefore the linearized system is asymptotically
stable if there exists a non-zero negative intrinsic reactivity effect.
The coupling effect k. is restricted physically to positive values.
The canonic V is
Vo= 2,2 + 2,2

where, from the transformation (3.6),
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z=2lx

I

The elements of the P matrix are found by solving

Ap=PA
For this case,
3 Kp K2
E-
K2 -K1
and
1 1
-1 1 K1 Ky
P=3
1
Ky K 1

where K1 and K, are arbitrary positive constants. The V function in the

real system variables 1is therefore

V= x12 + 2K x;x, + x22 (4.4)

where

K= —4—2
71w 2
K™K,

By Theorem 3.2, K is restricted to values IK! <1

This approach provides some hints for choosing general quadratic
forms. The linear system matrix A in this case is symmetric. Also, the
resulting V.is seen to be symmetric in x; and x9 . This idea would elim-
inate some guesswork in a non-methodical approach. The concept can be
generalized further. The canonic approach results in a V function in
which the variables are weighted according to the magnitudes of their

coefficients in the system equations., This provides a general guide for
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deciding upon the coefficients in a general V . There is no doubt that
these results could be discovered through the process of constraining v
to be negative definite, but only after much trial and error.

The derivative of Eq. (4.4) is

1 . .
2 V= xl(xl + Kxp) + x9(xp + le) 4.5)

which is, along solutions of the linearized system (4.2)

1 .
32V = - Lagike) i ] ey 2497

- 2x9%p [R(kp#k ) k] - (4.6)
Equation (4.6) is negative-definite if

kp + (1-Kk, > 0,

kp(ky + 2kg) > 0

These inequalities are satisfied for all admissible values of K if kp
and k. are positive. This result, of course, is predetermined in the
canonic approach by the sign of the eigenvalues.

In order to illustrate clearly the process of obtaining the

region of stability for the nonlinear system, it is assumed that

kp = k. = 1 . Equation (4.5) for the nonlinear system (4.1) is
125 2
) E ¥ o= - (2~K)(x1 +x22)-2(2K-1)x1x2

- (X13+X23) -KX1X2 (X1+X2) .
The technique is to choose a value of K and find the region V<O

The largest V which fits in this region is the region of stability. A

56



new value of K is then chosen and the process is repeated. If the
new reglon encloses an area in the state space not previously described,
the two regions are superimposed to improve the result. If K= 0 ,

V= x12 + x22

which describes circles in the xyx5 plane, and

N

‘é‘.’ - -2()(124'5(22) + ZXIXZ -(x13+'x23) . 4.7)

The zero solution of Eq. (4.7) can be found easily by transforming the
coordinates into polar form
X1 = 1 cos O

Xg =T sin 6 .

The equation V = 0 is satisfied at the origin, which must be true by
the conditions of the Second Method, and uniquely along the curve

described by

1l - cosfsind
cos39 + sin39

r = -2

This describes a straight line x5 = - xy - 2, which has a slope of -1
and passes through the point x; = x, = -1 .

A few numerical substitutions in Eq. (4.7) reveal that V is
negative above the line V = O, or in the direction of the origin. The
largest circle which fits in this region passes through the point
X] = X9 = -1 ; therefore the nonlinear system with zero delay is asymp-
totically stable in the region

x12+ %2 <2, (4.8)
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or within a circle of radius 2 in the X1Xp state plane.

For all values of lK[< 1, the line V = 0 passes through the
-1,-1 point. Values of K < 0 result in ellipses whose major axes fall
along x; = X9 . Hence, reglons obtained for all K < 0 lie inside the
region (4.8) and add no new information. Values of K > 0 describe el-
lipses elongated on x| = -x9 and the curves V =0 in polar form have
minimum radii other than JE . The calculations are repeated for K = 1/2
and K = 3/4 and the regions are superimposed to obtain a larger stable.
region.

Figure 4.1 shows the result of these calculations along with
some actual stable and unstable system trajectories obtained from analog
computer solutions. The region is symmetric about Xy = Xg . The line
x = -1 is the line of zero power for the system. Thﬁs, trajectories out-
side the region x > -1 do not represent physically real cases. For this

practical reason, the region obtained for K = 3/4 is superfluous.

Stability with Time Delay

The basic approach for treating the nonlinear time delay problem
also is first to constrain the linearized system to be asymptotically
stable. The linearized system with delay is, from Eq. (4.1), for the

case kp =k. =1,

il = - 2 % xy + % X9 (t-T)
4.9)

iz = -2 % xo + % xq(t-T)
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where the argument of x is deleted if it is only t.

If K = 0, from Eq. (4.5), V is

%& V. = -(x12+'x22) +% [X1x2(t-T)+ xel(t-T) ] . (4.10)

D

From the mean value representation in Eq. (3.13) and from the system

equations (4.9), the delayed variable substitutions are

x1(t-T) = x1 + 2 % T™><1(0) - % Tx, (0-T) ,
(4.11)

Xp(t-T) = x5 + 2 % Txz (o) - % Tx1 (o-T)

Equations (4.l1) are now substituted into Eq. (4.10) and, according
to the technique described in the previous chapter, the following steps
are taken:
(a2) The cross products xx(o), xx(o-T) are written as
lxx(c)' , and Ixx(c-T)l ;
(b) Wherever the absolute value cross products appear, the
sign of the cross product coefficient is made positive

to ensure that the resulting function 1is greater than V .

The result is

1 .
> V< -(x12+x22)+ X{X9 (4.12)

W =

+ % T [lexz(c) |+ |x5%1 (o) l]+ %[lexl(o-T) [+]x9%, (o-T) I]
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The inequality relationships (3.9) arising from Theorem 3.4 are given

by Ineq. (3.19) for the case K = 0 . Therefore the magnitudes
Ix1¢e) [, Ix2¢a) [, Ix1(e-T) |, [x2(e-m)|

must all be individually less than

J_%_ [ |x1| + Ile]

If the inequality relationships are substituted into Ineq. (4.12),

the result is

lege.1-38 24 x.2 B
s V<-a 22T %+ %% + (L+ 35D x| o (4.13)

The right side of Ineq. (4.13) is -w(x) from Theorem 3.4, and -w(x)

is negative-definite if

B
;T <

N

The extension of the manipulations to the nonlinear system is
complicated by the fact that the nonlinear terms appear not only with
the argument t but also with the argument o . This of course is due
to the mean value representation wherein the complete system equations
must be rewritten in terms of x(o). The final result is

1

2

V< -(1- % % T) (xq 24%52) +( 1+ % f— T) |x1%, |

e

(4.14)

1 1
- E (1- % T) (X13+XZ3) + ‘2‘ ‘% Txlxz(x1+ XZ) .
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The case of K = 1/2 yields
V= x12 + x1x9 + x22

which leads to the elliptical delay inequality relationships (3.21).

The solution to Eq. (3.20) for K = 1/2 is

therefore all the absolute values of the variables with retarded

arguments must be less than

A n

The result for the linearized system is

%é\} <-(1-33 8 m (x124%,2)+ 63 B [xyxy (4.15)

and for the nonlinear case,

% V<-(l-33 % T) (x1%4x92)+ 63 % T [x9x,]

™ =

(4.16)

- % -3 % T) (x1 4% 3) - %— -3 % T)x1xp (x+x7)

The right side of Ineq. (4.15) is negative-definite if

V3

B v3
7 T< 18
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The regions ef stability obtained are shown in Fig. 4.2 for
different values of % T . It is noted that for the case K = 1/2 ,
% T = 0.1, there 18 no region added to the circular region. This is
due to the fact that linear asymptotic stability cannot be found in

3

this case. % T must be less than 18 0.096, which is clearly not
true. This emphasizes the added restrictiveness of the elliptical V
function for the time delay problem.

The actual effect of the delay on some typical trajectories
is shown in Fig. 4.3 for the example under consideration. The time
delay analog simulation i3 presented in Appendix A. It is seen that
the upper two solutions exhibit the characteristics of a system that
is becoming less staéle, since the path lengths are generally longer.

The lower trajectory, however, actually becomes stable in the presence

of the delay.

A Complete Parametric Stability Study

The techniques can be applied to the system for a general kp,
ke, and T . This can be done readily if only one V function is used.
The circular form is especially appropriate because the resulting re-
gion lies almost entirely within the physically real part of the state
plane. Again, the circular function is also the least restrictive for
the time delay problém. Probably the most important advantage however
is that of ease of visualization and expression of the results. For
example, even if the example is tenth order, the stability result is
described simply as

x| <®r
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FIGURE 4.3.

EFFECT OF DELAY ON
TRAJECTORIES
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where I X l is the length of the vector whose elements are the magni-
tudes of the initial conditions of all the state variables. R is the
radius of a sphere of the same dimensiqnality as the system. R is also
the radius of the largest V in the region 6 <0 .

One case yet té be considered 1s that in which the result is
independent of dela&. Here, the mean value substitution is not used

and the inequality relationships

Ix,(e-D) |, lxp(eD) | <J—% [lx1l+lx2 I]

are used directly in the appropriate V . The result is, for the linear-
ized case, from Eq. (4.10),
1 2 vy - 2 2

and asymptotic stability is concluded if

The nonlinear result is
14 -
2pV< -kp(x12+x22) -kp(x13+x23)+2kc x5 |

The complete nonlinear stability results are presented in Fig.
4,4 in terms of the radius of the region of stability for V = x% + x%
Probably the most interesting conclusion that can be made from Fig. 4.4
is that as long as k., is less than kp , there exists a finite region of

stability independent of T . From the numbers given at the end of

Chapter 2, some practical system parameters are
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and

Bri =001 .

This point on the curve practically coincides with the case T = O.
The radius of the region of stability is slightly greater than unity.
This means that the power level of either reactor may be perturbed up
to 1004 and the system still returns to its operating point. At
2000 megawatts this number is extremely generous.

The general conclusion is that as the magnitude of the coupling
increases with respect to the negative reactivity effect, the effect of
the delay time on stability becomes more apparent. This is quite rea-
sonable since the coupling term in the equations is the one with the
retarded argument. For ratios ;ﬁ > 1, very small increases in T are
seen to decrease greatly the size of the known region of stability.

This effect clearly demonstrates that the intrinsic reactivity phenom-

enon has a strong stabilizing influence on the nonlinear system.
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Chapter 5

REALISTIC COUPLED-CORE SYSTEMS

The simplified model wused to illustrate the basic method in
the previous chapter is not expected to yield a particularly accurate
description of the behavior of the real system. The assumption in-
herent in the simplified model is that the temperature in the core
increases directly with the power level. That this is not true can
be seen from the system equations, Eq. (2.13). If there are no de-

layed neutrons, these equations are
}.(1 = - % ktzl(1+x1)— -% kcxl +% kcxl(t-T)

;1 d wxl - (.L)Zl

(5.1)

Xp = - % ktzz(l+x2)- % k.xy + % kcxl(t-T)
éZ = WXy - WZy

where k is the temperature reactivity contribution in terms of %

t
at the operating point.
An examination of Eqs. (5.1) reveals that if the power vari-

able x is a step function, that is, if =x 1is zero and suddenly takes

on some positive constant values, z has a solution in time of

z = x(1L - ™%

Obviously, for a given change in x , it takes a considerably long

period of time for =z to achieve the final value of x. The lag

69



between power and temperature is not zero in any event.

The intrinsic reactivity effect, it was concluded previously,
has a strong stabilizing effect upon the system. The lag between the
power and temperature, not to be confused with a discrete time delay
such ag in the neutronic coupling effect, undoubtedly leads to a less
stable situation. This case also, because it is a higher order pro-
blem, leads to increasingly severe stability conditions within the
method for treating the time delay. It is necessary, therefore, to
apply the method to a realistic problem in order to see if stability
can be determined despite the mounting difficulties. It is clearly
desirable to discuss practical stability and thus to illustrate the
usefulness of a method which appears to be largely mathematical in

nature.

The Approach for Higher Order Systems

By this time it is apparent that a judicious choice for a Lia-
punov function 1is that of the spherical type wherein only the system
variables squared appear. This is necessary to relieve as much as
possible the restrictiveness of the method for higher order time delay
cases. If the delayed neutrons are neglected for now, such a V func-

tion is

2 2

V= x12 + x22 + Kz1” + Kz,

where K is an arbitrary positive constant. Along solutions of the

linearized system with no delay, V is
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1.° . 2 2
2 V= - % kc (x12+x22)+ 2 % kcxle - Kw(zl "l'lz )
- ( % kt - Kh)) (X121+ xzzz) .

Sylvester's determinant for Eq. (5.2) is

%kc %(% ke - Kw) -%ke 0
18y _
7 ke - Kw) Ku 0 0
1
- B 0 % ke 5(-% k¢ -Kuw)
0 0 -21-(% ) Kuw

which leads to a conclusion of negative-definiteness of Eq. (5.2) if the
following inequalities are satisfied:
(a) % ke >0,

(b) Kw% kc-zl;(%kt-m)2>o,

Bre By -x? >0,

=

() -

(d - =(=k

N|—=
L vy

¢ - Kuw) 2 [kw%kc-%(% ke - Km)z:I >0

A problem arises here. The third inequality can never be satis-

fied. However, if K is chosen such that

Km-%kt ,
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then the left sides of the last two inequalities are zero. This means
that V is only negative-semidefinite, or there are combinations of x and
z which cause V to be zero other than at the origin. If Kw = % ke ,

V is

1. 2, 2 2, 2
2V--%kc (X1ﬂ2)+2%ch1X2-‘%k(21+22),

and it is seen quickly that the particular solutions for which V is zero
are
Xl-XZ )

z] =2y = 0

This is actually an admissible situation. From the basic stability
theorems, Theorgms 3.1 and 3.4, the condition is that V must be negative
along solutions of the system. Thus 1f the conditions under which 6 = 0
here do not describe system trajectorles, asymptotic stability for the
linearized system with no delay may still be concluded.

If the values above are substituted into Eq. (5.1), the conclu-
sion 1s that

x1 = 0

21 - wxy .

The equations for x insist that x must be a constant in time. On the
other hand, the equations for z require that z must be changing in time.
If z changes, x must also change according to the original equations,
Eq. (5.1). The requirements are therefore inconsistent and the solution

Xj = Xy , z] = 2o = 0 cannot be a solution of the system. This is not
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true, of course, in the case where the internal reactivity of the sys-
tem is proportional to the power. In Eq. (4.1) it can be seen that if
Xy = X, the time rates of change of x; and x, are the same, specifical-
1y

X = - %kpxl(l-l-xl) ,

and as a result Xy = Xy is a solution of the equations.

The problem of visualizing the results is ever present in higher
order problems. This difficulty is partially alleviated by the choice
of the spherical V function. In this case, the final results can be ex-
pressed in a compact mathematical notation as simply the radius of the
n-dimensional sphere. However, the task of finding the region in which
6 is negative remains. The best approach would seem to be to find this
region in each plane of the space. This can be accomplished by allowing
all the state variables in the function to be zero except for the two
which describe the particular plane under consideration. The danger in
this approach is that the actual region cannot be found in the entire
space merely from the information provided in each plane at the origin.
This can be seen in the third order case. If the region is found to
be a circle in the xy, xz, and yz planes, it would seem at first that
the region could be described as a sphere with the same radius as the
three circles. However, a detailed examination might reveal that the
surface of the region is actually depressed toward the origin in each
quadrant of the three dimensional space.

Nevertheleass, there seems to be no other satisfactory approach,.

Once the suspected region is deduced from the regions in the planes,
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the technique would be to substitute some values into V to ensure that
the correct region has~been found. A generalized Sylvester®s theorem
might be employed with the elements of the B matrix containing the state
variables as well as constants. The success of this approach depends
upon whether or not the nonlinearities appear in all the terms. If this
is true, the techniqﬁe becomes prohibitively complex. It is seen from
Eqs. (2.13) however, that only the equation which describes the power

is nonlinear. The auxiliary equations are linear. In this case, the
use of the Sylvester relationships is helpful. 1In solving the higher
order problems, use of both of these approaches will be appropriate;

and especlally, once a particular problem is solved, intuition will be
used to extend the results to additional problems. This is one of the
advantages of the Second Method of Liapunov, that previous experience

may be drawn upon to improve or to extend the results.

Failure of the Method for High Order Problems

Even though linear asymptotic stability is shown for the system
(5.1) with no delay, no stability conclusions result for the case with

delay. If the Second Method is applied to the linearized system with

delay, V is

V= - kc(Xlz'*"Xzz) - kt(212+222)

(&1 'S
Wie

(5.2)

+ kg [xq%, (£-)+ xp%, (£-T) ]

From the mean value system representation, the substitution for

xl(t-T) is,

74



xl(t-T) = x; + % T [ﬁtzl(q) + kcxl(o)-kcxz(a-T)] s

and the substitution for xz(t-T) is similar to this. The required delay

inequalities for

V= x12 + X22 + Kz]_?‘ + k222

are

lx; ()| and WK z4(s) ]

<# [ eyl |+ ey 4z,

An inspection of Eq. (5.2) reveals that 1if the method is applied, the
coefficients of the negative quadratic terms in x decrease while the
coefficient of the cross product xjxy increases. Therefore, a subse-
quent application of Sylvester®s theorem shows that V is not even
negative-semidefinite. This is a result of the great restrictiveness
of the method and, in addition, of the nature of the system (5.1).
The fact that V is only semidefintte for the linearized system would
result in failure even if the very slightest restrictive measure were
imposed.

Another fourth-order case is tha; in which the prompt tempera-
ture effect is assumed but the delaved neutrons are not neglected. In

this case, the equations are from Eq. (2.13),
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' 2
x] = - % (kptke+1)xq + % v+ % koxo (£-T) - % kpX1

vy = Mxy-yy)

(5.3)
i2 - - % (kptket+l)x2 + % y2+ % kcxl(t-T)-kpxl2
Yo = Mxy-ys) .
If V is
v is, 1if K\ = B/g , for the linearized system with no delay,
14
75V = -(kp+kc+1)(x12+x22)-(y12+y22)
(5.4)

+ 2k x1%xy + 2(x1y1#X9y7)
Sylvester's inequalities for Eq. (5.4) are:
(a) kp + k. +1>0
(®) ky + ke >0
(c) kp(kp + 2k.) + (kp +k,) >0
(@) k(1 +2k) >0

The inequalities are satisfied for all k_ and k. > O , hence V is

P

negative-definite and the linearized system with no delay is asymptotical-

ly stable.
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If the delayed neutrons are added to the system (5.1), however,
the same problem arises. V is only semi-definite, so there is no hope
of proving stability for any delay, however small. The effect of the
delayed neutrons on the linearized system (5.3) can be analyzed for the

case with delay. Equation (5.4) leads to the inequality

1 -
TEVE - (D) (x1240%) + 2(x1y14%2y2)

W=

- (y12+ y22) + 2k, |x1x2|

+ %Z ke [lxlyll + lxzyzl + lxlyzl + lxzyl]}

for the case independent of delay. TIf k., = 0 , the right side is
negative-definite; hence, there should be a k., sufficlently small for
which the linear system can be proved stable independent of delay.

The results are summarized in Fig. 5.1. It is noted that the range

of allowable parameters for stability is decreased from the case

where there are no delayed neutrons. This is due again to the restric-

tive nature of the metheod.

Stability of the Sixth Order System
The region of stability is found for the case T = 0 by the
concentional approach of adding the nonlinear terms to V for the linear-

ized system. The region V < 0 is found mostly by trial and error, as
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EFFECT OF DELAYED NEUTRONS
ON LINEAR STABILITY
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mentioned previously. An estimate is made based upon the region in each
plane, then values of the stéte variables are substituted into V for the
assumed maximum V. The radius of the region as a function of k. is
shown in Fig. (5.2).

As a comparison to the results, some actual system responses are
shown in the last figures 1n this chapter. Solutions are obtained for
+ 100¢ temperature perturbations in one core. Xy and xo are the power
responses for the perturbed and unperturbed core and z; and z5 are the
assoclated temperature responses. The effect of an unrealistically large
delay for ko = 1 is also shown. The numbers used therefore exceed the
limits of those found mathematically by a large degree. The fact that
the system remains stable illustrates that the stabilility results are ex-
tremely conservative. The values kp = ] and % = 100 are used 1in the

simulction studies.
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Chapter 6

CONCLUSIONS

Evaluation of the Results

The results indicate, from a practical viewpoéint, the gap be-
tween the low order, simplified example and the realistic problem.

The results obtained for the second order case in Chapter 4 are quite
adequate. However, the results for the realistic, sixth order system
are marginal with respect to actual system parameters. The study of
the response of the system due to temperature perturbations reveals,
moreover, that stability exists for conditions much more severe than
would ever be encountered physically. A + 1004 temperature perturba-
tion, for example, would certainly lead to the destruction of the re-
actor core at high initial power and temperature. Although the regions
of stability may then be adequate, the values of the delay time and
coupling coefficient obtained mathematically for linear stability are
close to actual parameters. The method is then just barely adequate
to prove stability for a realistic system and there is no doubt that
the method would fail for an even higher order system than considered
here.

The regions of stability obtained for the systems with zero
delay are good in light of practical considerations. Again, only fairly
small perturbations of the variables are to be expected in the actual
system due to material limitations. Also, from the results of the
second order problem, the combination of the coupling effect and delay
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time from the numerical example result in an essentially zero delay
case. As the coupling increases, the effect of the delay 1is quite
pronounced; but the magnitude of the coupling in a nuclear rocket
cluster, for example, would be limited. The proximity of the cores
would be fixed by the agsociated system equipment such as the nozzles.
An important conclusion which can be drawn from the second order study
is that the delay time can be neglected if the coupling is less than
about one-half of the intrinsic reactivity contribution.at operating
conditions,.

The fundamental practical conclusion is that there are no
stability problems for a system of clustered power reactors, if the
system 18 adequately described by the model used in this study. This
conclusion can be extended to systems of several cores since the basic
effect of the coupling upon the stability of the system has been deter-
mined here.

While there are no stability problems in the mathematical sense
the actual response of the system may be somewhat undesirable. This con-
clusion cannot arise from the mathematical stability analysis; however,
the simulation study reveals the oscillatory behavior of the system.
This would indicate the desirability of using some form of closed loop

control on the system.

Recommendations for Further Study

The answer to the stability question for coupled-core nuclear
reactor systems is provided. There are, of course, a great many problems

which could be worked for coupled-core systems. The question of
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automatic control is an interesting one. This is not a stability pro-
blem, but due to the pecularity of the coupled system on examination

of the proper practical control technique should be made. Each core

is essentially an entire system. It must be decided whether to control
each core individually or te control just one core and rely upon the
inherent stability of the system to provide a desirable behavior.

An application of the approach given in this study might be
that of system reduction for stability studies. Probably the most un-
desirable feature a stability study can have is that there are too many
system equations. If the time delay can be handled, however, an approxi-
mate reformulation of the model can be made. For example, the tempera-
ture-induced reactivity could be written 1in terms of a true discrete
time delay rather than in the form of another equation describing the
lag of the temperature behind the power. If there are no delayed neu-

trons and for a two core system, the equations are

}'{1 m - % ktX1(t- i—) [lﬂl} - % kc(xl-xz)

;{2 - - % ktxz(t- ‘(‘t‘) [14'9‘2.] - % kc(xl-XZ)

where the coupling delay is neglected and the reactivity effect is
- Bk ox(e-1y .
£ w

The delay time % is the mean time which the temperature lags the power
from Eq. (2.13c). A linear time delay stability analysis on this pro-

blem shows that, for stability,
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w>2%(kt+2kc).
If ke = 1, %- 100, and k, = 0.1 ,
w > 240 .

For the numbers given here, w is actually about unity. This approach
does not seem to be particularly interesting for this problem.
However, there is a tendency to neglect the delayed neutrons
in kinetics studies. This may not be a bad assumption in stability
studies, but prompt neutron kinetics are inadequate for more detailed
dynamics studies. The delayed neutron effect can then be approximated

by

-8 g -1
P x + P x(t X)

instead of

- % x + % y

plus another differential equation for y(t). It is not known if these
representations provide sufficiently accurate approximations.

An area for significant advancement is in that of the purely
mathematical features of this problem. The method as presented here
is clearly restricted to systems which can be easily linearized, are

of low order, and for which a quadratic V function can be written.
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The use of a non-quadratic V would require that the f£(V) be different
from V/q. Some work was done on this. For example, in a single

reactor with no delayed neutrons a V function of the form
V =x - 1n(l + x) + Kz2

can be found from the Variable Gradient Method (Schultz, 1962). This

would suggest an f(V) of the general form

f(vV) ~ eV H

however, no suitable form could be found. In a coupled system, the"
logarithmic V does not result. The form is quadratic with quadratic
coefficlents. A quadratic £(V) is unsuitable because, for example,
if

F(V) = V2

the condition £(V) > V is not always satisfied.

It is essential that these questions be explored further,
for there are many real problems in which the concept of a time lag
is involved. In nuclear reactor systems control there could be
lags in the mechanical portion of the control rod drive mechanism.
The method presented here, however, succeeds in providing basic
conclusions on coupled-core stability, and leads to good results for

the low order cases.
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Appendix A

ANALOG SIMULATION OF THE TIME DELAY

A delay circuit is constructed on a Computer Systems Inc., Model
5800 repetitive analog computer by using the memory feature of the inte-
grators, In this mode, a control pulse is applied to the integrator,
causing it to reset and operate with the frequency of the control pulse.
The integrator follows the function in the reset mode, then holds the
final value during the operate period if the function is applied to the
initial condition input of the amplifier. If a reverse pulse is applied,
the initial value of the input is held during reset, and the function is
tracked during operate.

Figure (A-1) is the basic circuit with four optional outputs, de-
pending upon the type of output desired, The symbol M indicates a nor-
mal control pulse, R the reverse pulse, and no symbol indicates that
the integrator is operating in its normal mode.

For a general function, the outputs of the four memory units are
shown in Figure (A-2). A step approximation to x(t-T) can be obtained
from #2, #3, or #4, with the delay time

T = ( No. of Amplifiers - 1)/2uw,
where  1s the frequency of the control pulse. Also, a straight line
approximation can be constructed using a real time integrator. Note that
the reset and operate cycles of #2 and #4 are in phase, but #2 leads #4

in time by one cycle. The outputs can then be used as stored values
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sampled from #(t) at times 1/w apart. Therefore, the straight line

can be constructed as follows:
1
x(t- ;) = xo +fw(x2 x4)dt

where w(x2-x4) is the slope, a constant, over each cycle. xb is the
initial value of x(t).

It is found that in actual use, the straight line approximation
is quite difficult to use, For short delay times, it is difficult to
reproduce properly delayed functions. The results are extremely sensi-
tive to variations in the potentiometer settings for w., However, for
delay times or less than about 0.5 seconds, the step function provides

a sufficiently accurate solution.

94 NASA-Langley, 1966 CR-Uk7



